
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 6B: Public Key Crypto
Co-Instructor: Nikos Triandopoulos

February 11, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

6B.1 Public-key
encryption & digital
signatures

2

Recall: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs
For symmetric-key message encryption/authentication

u adversary
u types of attacks

u trusted set-up
u secret key is distributed securely
u secret key remains secret

u trust basis
u underlying primitives are secure

u PRG, PRF, hashing, ...
u e.g., block ciphers, AES, etc.

3

Alice Bobm cencrypt

k k

decrypt mc

Alice Bobm m, t“sign”

k k

verifym’, t’

rej

acc

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

u “securely obtain”

u need of a secure channel

u “shared secret key”

u too many keys

4

strong assumption to accept

challenging problem to manage

Public-key cryptography to the rescue…

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

u “securely obtain”

u requires secure channel for key distribution (chicken & egg situation)

u seems impossible for two parties having no prior trust relationship
u not easily justifiable to hold a priori

u “shared secret key”

u requires too many keys, namely O(n2) keys for n parties to communicate
u imposes too much risk to protect all such secret keys
u entails additional complexities in dynamic settings (e.g., user revocation)

5

(A) strong assumption to accept

(B) challenging problem to manage

Alternative approaches?
Need to securely distribute, protect & manage many session-based secret keys

u (A) for secure distribution, just “make another assumption…”
u employ “designated” secure channels

u physically protected channel (e.g., meet in a “sound-proof” room)

u employ “trusted” party

u entities authorized to distribute keys (e.g., key distribution centers (KDCs))

u (B) for secure management, just ‘live with it!”

6

Public-key cryptography to the rescue…

Public-key (or asymmetric) cryptography
Goal: devise a cryptosystem where key setup is “more” manageable

Main idea: user-specific keys (that come in pairs)
u user U generates two keys (Upk, Usk)

u Upk is public – it can safely be known by everyone (even by the adversary)
u Usk is private – it must remain secret (even from other users)

Usage
u employ public key Upk for certain “public” tasks (performed by other users)
u employ private key Usk for certain “sensitive/critical” tasks (performed by user U)

Assumption
u public-key infrastructure (PKI): public keys become securely available to users

7

disclaimer on names
private = secret

From symmetric to asymmetric encryption
secret-key encryption
u main limitation

u session-specific keys

public-key encryption

u main flexibility

u user-specific keys

u messages encrypted by receiver’s PK can (only) be decrypted by receiver’s SK

8

Alice Bobm cencrypt

k k

decrypt mc

BobPK BobSK

Alice Bobm cencrypt decrypt mc

“sensitive” task

From symmetric to asymmetric message authentication
secret-key message authentication (or MAC)
u main limitation

u session-specific keys

public-key message authentication

(or digital signatures)
u main flexibility

u user-specific keys

u (only) messages signed by sender’s SK can be verified by sender’s PK

9

Alice Bobm m, t“sign”

k k

verifym, t

rej

acc

AliceSK AlicePK

Alice Bobm m, σsign verifym, σ

rej

acc“critical” task

Thus: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs
For asymmetric-key message encryption/authentication

u adversary
u types of attacks

u trusted set-up
u PKI is needed
u secret keys remain secret

u trust basis
u underlying primitives are secure

u typically, algebraic computationally-hard problems
u e.g., discrete log, factoring, etc.

10

Alice Bobm cencrypt decrypt mc

Alice Bobm m, t“sign” verifym, t

rej

acc

AliceSK AlicePK

BobPK BobSK

General comparison

Symmetric crypto

u key management
u less scalable & riskier

u assumptions
u secret & authentic communication
u secure storage

u primitives
u generic assumptions
u more efficiently in practice

Asymmetric crypto

u key management
u more scalable & simpler

u assumptions
u authenticity (PKI)
u secure storage

u primitives
u math assumptions
u less efficiently in practice (2-3 o.o.m.)

11

Public-key infrastructure (PKI)

A mechanism for securely managing, in a dynamic multi-user setting,
user-specific public-key pairs (to be used by some public-key cryptosystem)
u dynamic, multi-user

u the system is open to anyone; users can join & leave
u user-specific public-key pairs

u each user U in the system is assigned a unique key pair (Upk, Usk)
u secure management (e.g., authenticated public keys)

u public keys are authenticated: current Upk of user U is publicly known to everyone

Very challenging to realize
u currently using digital certificates; ongoing research towards a better approach…

12

Overall: Public-key encryption & signatures

Assume a trusted set-up
u public keys are securely available (PKI) & secret keys remain secret

13

Alice Bobm cencrypt

Bpk Bsk

decrypt mc

A

Alice Bobm m, σsign

Ask Apk

verifym, σ

rej

acc

Secret-key vs. public-key encryption

14

Public-key cryptography: Early history
Proposed by Diffie & Hellman

u documented in “New Directions in Cryptography” (1976)
u solution concepts of public-key encryption schemes & digital signatures
u key-distribution systems

u Diffie-Hellman key-agreement protocol
u “reduces” symmetric crypto to asymmetric crypto

Public-key encryption was earlier (and independently) proposed by James Ellis
u classified paper (1970)

u published by the British Governmental Communications Headquarters (1997)

u concept of digital signature is still originally due to Diffie & Hellman

15

6B.2 Public-key
certificates

16

How to set up a PKI?

u How are public keys stored? How to obtain a user’s public key?

u How does Bob know or ‘trust’ that APK is Alice’s public key?

u How APK (a bit-string) is securely bound to an entity (user/identity)?

17

public key: APK
secret key: ASK

public key: BPK
secret key: BSK

Achieving a PKI…

How can we maintain the invariant that at all times
u any given user U is assigned a unique public-private key pair; and

u any other user known U’s current public key?

u secret keys can be lost, stolen or they should be revoked

Recall

u PK cryptosystems come with a Gen algorithm which is run by U

u on input a security-strength parameter, it outputs a random valid key pair for U

u public keys can be made publicly available

u e.g., sent by email, published on web page, added into a public directory, etc.

18

entails binding
users/identities

to public keys

Distribution of public keys

Public announcement
u users distribute public keys to recipients or broadcast to community at large

Publicly available directory
u can obtain greater security by registering keys with a public directory

Both approaches have problems and are vulnerable to forgeries

19

Do you trust your public key?

u Impostor claims to be a true party

u true party has a public and private key

u impostor also has a public and private key

u Impostor sends impostor’s own public key to the verifier

u says, “This is the true party’s public key”

u this is the critical step in the deception

20

Certificates: Trustable identities & public keys

Certificate

u a public key & an identity bound together

u in a document signed by a certificate authority

Certificate authority (CA)

u an authority that users trust to securely bind identity to public keys

u CA verifies identities before generating certificates for these identities

u secure binding via digital signatures

u ASSUMPTION: The authority’s PK CAPK is authentic

21

Public-key certificates in practice

Current (imperfect) practice for achieving trustable identities & public keys
u everybody trusts a Certificate Authority (CA)

u everybody knows CAPK & trusts that CA knows/protects corresponding secret key CASK

u a certificate binds identities to public keys in a CA-signed statement
u e.g., Alice obtains a signature on the statement “Alice’s public key is 1032xD”

u users query CA for public keys of intended recipients or signers

u e.g., when Bob wants to send an encrypted message to Alice
u he first obtains & verifies a certificate of Alice’s public key

u e.g., when Alice wants to verify the latest software update by Company
u she first obtains & verifies a certificate of Company’s public key

22

Example

document signed
by CA

a certificate is a public
key and an identity
bound together and

signed by a certificate
authority (CA)

a certificate authority is an authority
that users trust to accurately verify

identities before generating certificates
that bind those identities to keys

23

Certificate hierarchy

Single CA certifying every public key is impractical

Instead, use trusted root certificate authorities

u root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.

u certificate “chain of trust”

u signSK_Symantec(“Brown”, PKBrown)
u signSK_Stevens(“faculty”, PKfaculty)
u signSK_faculty(“Nikos”, PKNikos)

24

Example 1: Certificate signing & hierarchy

25

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

Diana creates and delivers to Edward:

Edward adds:

Edward signs with his private key:

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Which is Diana’s certificate.

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

Delwyn creates and delivers to Diana:

Diana adds:

Diana signs with her private key:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

And appends her certificate:

Which is Delwyn’s certificate.

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

To create Diana’s certificate: To create Delwyn’s certificate:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Example 2

Nikos

Faculty

Brown

Symantec

What bad things can happen if the root CA system is compromised?

staffRISD

26

Secure communication over the Internet

27

What cryptographic keys are used to protect communication?

https://

X.509 certificates

Defines framework for authentication services

u defines that public keys stored as certificates in a public directory

u certificates are issued and signed by a CA

Used by numerous applications: SSL

Example: see certificates accepted by your browser

28

6B.3 Hybrid encryption

29

Secret-key cryptography is “reduced” to public-key

PK encryption can be used “on-the-fly” to securely distribute session keys

Main idea: Leverage PK encryption to securely distribute session keys

u sender generates a fresh session-specific secret key k and learns receiver’s public key Rpk

u session key k is sent to receiver encrypted under key Rpk

u session key k is employed to run symmetric-key crypto

u e.g., how not to run
above protocol

30

4
., 5

abc 6
def

9
wxyz

8
tuv

7
pqrs

Bill, give me your public key

Here is my key, Amy

1

2

3 Here is a symmetric key we can use

6mno

5jkl

1
.,

 2abc

3def

9wxyz

8tuv

7pqrs

4ghi

Hybrid encryption

“Reduces” secret-key crypto to public-key crypto

u better performance than block-based public-key CPA-encryption

u main idea

u apply PK encryption on random key k

u use k for secret-key encryption of m

31

Hybrid encryption using the KEM/DEM approach

“Reduces” secret-key crypto to public-key crypto

u main idea
u encapsulate secret key k into c
u use k for secret-key encryption of m
u KEM: key-encapsulation mechanism - Encaps
u DEM: data encapsulation mechanism - Enc’

u KEM/DEM scheme

u CPA-secure if KEM is CPA-secure and Enc’ EAV-secure

u CCA-secure if KEM and Enc’ are CCA-secure

32

6B.4 Number theory
background

33

Multiplicative inverses

The residues modulo a positive integer n comprise set Zn = {0,1,2,…,n - 1}

u let x and y be two elements in Zn such that x y mod n = 1

u we say: y is the multiplicative inverse of x in Zn

u we write: y = x-1

u example:

u multiplicative inverses of the residues modulo 11

x 0 1 2 3 4 5 6 7 8 9 10
x-1 1 6 4 3 9 2 8 7 5 10

34

Multiplicative inverses (cont’ed)

Theorem

 An element x in Zn has a multiplicative inverse iff x, n are relatively prime

u e.g., the only elements of Z10 having a multiplicative inverse are 1, 3, 7, 9

Corollary

 If p is prime, every non-zero residue in Zp has a multiplicative inverse

Theorem

 A variation of Euclid’s GCD algorithm computes the multiplicative inverse of an
element x in Zn or determines that it does not exist

x 0 1 2 3 4 5 6 7 8 9
x-1 1 7 3 9

35

Computing multiplicative inverses

Fact
u given two numbers a and b, there exist integers x, y s.t.

x a + y b = gcd(a,b)
which can be computed efficiently by the extended Euclidean algorithm.

Thus

u the multiplicative inverse of a in Zb exists iff gcd(a, b) = 1
u i.e., iff the extended Euclidean algorithm computes x and y s.t. x a + y b = 1

u in this case, the multiplicative inverse of a in Zb is x

36

Euclid’s GCD algorithm

Computes the greater common divisor
by repeatedly applying the formula
 gcd(a, b) = gcd(b, a mod b)

u example

u gcd(412, 260) = 4

37

Algorithm EuclidGCD(a, b)
 Input integers a and b
 Output gcd(a, b)

 if b = 0
 return a
 else
 return EuclidGCD(b, a mod b)

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

Extended Euclidean algorithm

Theorem
 If, given positive integers a and b,

d is the smallest positive integer
s.t. d = ia + jb, for some integers
i and j, then d = gcd(a, b)

u example
u a = 21, b = 15

u d = 3, i = 3, j = -4

u 3 = 3×21 + (-4)×15 = 63 - 60 = 3

38

Algorithm Extended-Euclid(a, b)
 Input integers a and b
 Output gcd(a, b), i and j
 s.t. ia+jb = gcd(a,b)
 if b = 0
 return (a,1,0)
 (dʹ, xʹ, yʹ) = Extended-Euclid(b, a mod b)
 (d, x, y) = (dʹ, yʹ, xʹ - [a/b]yʹ)
 return (d, x, y)

Multiplicative group

A set of elements where multiplication � is defined

u closure, associativity, identity & inverses

u multiplicative groups Z*
n, defined w.r.t. Zn (residues modulo n)

u subsets of Zn containing all integers that are relative prime to n

u CASE 1: if n is a prime number, then all non-zero elements in Zn have an inverse

u Z*
7 = {1,2,3,4,5,6}, n = 7

u 2 � 4 = 1 (mod 7), 3 � 5 = 1 (mod 7), 6 � 6 = 1 (mod 7), 1 � 1 = 1 (mod 7)

u CASE 2: if n is not prime, then not all integers in Zn have an inverse

u Z*
10 = {1,3,7,9}, n = 10

u 3 � 7 = 1 (mod 10), 9 � 9 = 1 (mod 10), 1 � 1 = 1 (mod 10)

39

Order of a multiplicative group

Order of a group = cardinality of the group

u multiplicative groups for Z*
n

u the totient function φ(n) denotes the order of Z*
n , i.e., φ(n) = |Z*

n|

u if n = p is prime, then the order of Z*
p={1,2,…,p-1} is p-1, i.e., φ(n) = p-1

u e.g., Z*
7 = {1,2,3,4,5,6}, n = 7, φ(7) = 6

u if n is not prime, φ(n) = n(1-1/p1)(1-1/p2)…(1-1/pk), where n = pe1
1pe2

2…pek
k

u e.g., Z*
10 = {1,3,7,9}, n = 10, φ(10) = 4

u if n = p q, where p and q are distinct primes, then φ(n) = (p-1)(q-1)

u difficult problem: given n = pq, where p, q are primes, find p and q or φ(n)

40

Factoring problem

Fermat’s Little Theorem

Theorem

 If p is a prime, then for each nonzero residue x in Zp, we have xp - 1 mod p = 1

u example (p = 5):

14 mod 5 = 1 24 mod 5 = 16 mod 5 = 1

34 mod 5 = 81 mod 5 = 1 44 mod 5 = 256 mod 5 = 1

Corollary

 If p is a prime, then the multiplicative inverse of each x in Z*
p is xp - 2 mod p

u proof: x(xp - 2 mod p) mod p = xxp - 2 mod p = xp - 1 mod p = 1

41

Euler’s Theorem

Theorem

 For each element x in Z*
n, we have xφ(n) mod n = 1

u example (n = 10)

u Z*
10 = {1,3,7,9}, n = 10, φ(10) = 4

u 3φ(10) mod 10 = 34 mod 10 = 81 mod 10 = 1

u 7φ(10) mod 10 = 74 mod 10 = 2401 mod 10 = 1

u 9φ(10) mod 10 = 94 mod 10 = 6561 mod 10 = 1

42

Computing in the exponent

For the multiplicative group Z*
n, we can reduce the exponent modulo φ(n)

u xy mod n = xk φ(n) + r mod n = (xφ(n))k xr mod n = xr mod n = x y mod φ(n) mod n

Corollary: For Z*p, we can reduce the exponent modulo p-1

u example

u Z*10 = {1,3,7,9}, n = 10, φ(10) = 4

u 31590 mod 10 = 31590 mod 4 mod 10 = 32 mod 10 = 9

u example

u Z*p = {1,2,…,p - 1}, p = 19, φ(19) = 18

u 1539 mod 19 = 1539 mod 18 mod 19 = 153 mod 19 = 12

43

Powers

Let p be a prime
u the sequences of successive powers of the elements in Z*

p exhibit repeating
subsequences

u the sizes of the repeating subsequences and the number of their
repetitions are the divisors of p – 1

u example, p = 7

44

x x2 x3 x4 x5 x6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

6B.5 The Discrete Log
problem & its
applications

45

The discrete logarithm problem
Setting
u if p be an odd prime, then G = (Zp

*, ·) is a cyclic group of order p – 1

u Zp
* = {1, 2, 3, …, p-1}, generated by some g in Zp

*

u for i = 0, 1, 2, …, p-2, the process gi mod p produces all elements in Zp
*

u for any x in the group , we have that gk mod p = x, for some integer k

u k is called the discrete logarithm (or log) of x (mod p)

Example
u (Z17

*, ·) is a cyclic group G with order 16, 3 is the generator of G and 316 = 1 mod 17

u let k = 4, 34 = 13 mod 17 (which is easy to compute)

u the inverse problem: if 3k = 13 mod 17, what is k? what about large p?
46

Computational assumption

Discrete-log setting
u cyclic G = (Zp

*, ·) of order p – 1 generated by g, prime p of length t (|p|=t)

Problem
u given G, g, p and x in Zp

*, compute the discrete log k of x (mod p)

u we know that x = gk mod p for some unique k in {0, 1, …, p-2}… but

Discrete log assumption
u for groups of specific structure, solving the discrete log problem is infeasible

u any efficient algorithm finds discrete logs negligibly often (prob = 2-t/2)

Brute force attack
u cleverly enumerate and check O(2t/2) solutions

47

ElGamal encryption
Assumes discrete-log setting (cyclic G = (Zp

*, ·) = <g>, prime p, message space Zp)
Gen
u secret key: random number x Î Z*

p public key: A = gx mod p, along w/ G, g, p
Enc
u pick a fresh random r Î Z*

p and set R = Ar (= gxr)
u send ciphertext EncPK(m) = (c1, c2) where c1 = gr, c2= m · R mod p
Dec
u DecSK(c1,c2) = c2 (1/c1

x) mod p where c1
x = gxr

Security is based on Computational Diffie-Hellman (CDH) assumption
u given (g, ga,gb) it is hard to compute gab

A signature scheme can be also derived based on above discussion

48

Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
u instead of meeting in person in a secret place, they want to use the insecure line…

u KA scheme: they run a key-agreement protocol Π to contribute to a shared key K
u correctness: KA = KB

u security: no PPT adversary A, given T, can distinguish K from a trully random one

49

Alice Bob

input 1n

output KA output KB

input 1n

…

transcript T of exchanged messages

A

Key agreement: Game-based security definition

u scheme Π(1n) runs to generate K = KA = KB and transcript T; random bit b is chosen
u adversary A is given T and kb; if b = 1, then kb = K, else kb is random (both n-bit long)
u A outputs bit b’ and wins if b’ = b
u then: Π is secure if no PPT A wins non-negligibly often

50

(A) Alice Bob

input 1n

output KA output KB

input 1n

…

transcript T of exchanged messages

A (C) T, kb

(B) b is randomly chosen

(D) output b’ (E) A wins iff b’ = b

The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
u DH KA scheme Π

u discrete log setting: p, g public, where <g> = Z*
p and p prime

51

Alice Bob

(3) send ga mod p

(4) send gb mod p
(6) set K = gab mod p = (ga mod p)b mod p

(1) randomly pick secret a (2) randomly pick secret b

(5) set K = gab mod p = (gb mod p)a mod p

input 1n input 1n

Security

u discrete log assumption is necessary but not sufficient

u decisional DH assumption

u given g, ga and gb, gab is computationally indistinguishable from uniform

52

Authenticated Diffie-Hellman

ga mod p
gb mod p
gc mod p

gc mod p

Alice computes gac mod p and Bob computes gbc mod p !!!

Is CAlice Alice’s certificate?
CAlice, ga mod p, SignAlice(ga mod p)
CBob, gb mod p, SignBob(gb mod p)

Is CBob Bob’s certificate?
CA

Alice Bob

MITM attacker

YesYes

53

6B.6 The RSA algorithm

54

The RSA algorithm (for encryption)
General case
Setup (run by a given user)

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n)

Keys
u public key is KPK = (n, e)
u private key is KSK = d

Encryption
u C = Me mod n for plaintext M in Zn

Decryption
u M = Cd mod n

Example

55

Setup
u p = 7, q = 17, n = 7 × 17 = 119
u e = 5, φ(n) = 6 × 16 = 96
u d = 77
Keys
u public key is (119, 5)
u private key is 77
Encryption
u C = 195 mod 119 = 66 for M = 19 in Z119

Decryption
u Μ = 6677 mod 119 = 19

Another complete example

56

u Setup
u p = 5, q = 11, n = 5 × 11 = 55

u φ(n) = 4 × 10 = 40
u e = 3, d = 27 (3×27 = 81 = 2×40 + 1)

u Encryption
u C = Μ3 mod 55 for M in Z55

u Decryption
u Μ = C27 mod 55

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

*Correctness of RSA
Given
Setup

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n) (1)

Encryption
u C = Me mod n for plaintext M in Zn

Decryption
u M = Cd mod n

Fermat’s Little Theorem (2)
u for prime p, non-zero x: xp - 1 mod p = 1

Analysis

57

Need to show
u Med = M mod p × q
Use (1) and apply (2) for prime p
u Med = Med - 1 M = (Mp-1)h(q-1) M
u Med = 1h(q-1) M mod p = M mod p
Similarly (w.r.t. prime q)
u Med = M mod q
Thus, since p, q are co-primes
u Med = M mod p × q

A useful symmetry

[1] RSA setting

u modulo n = p × q, p & q are primes, public & private keys (e,d): d × e = 1 mod (p-1)(q-1)

[2] RSA operations involve exponentiations, thus they are interchangeable

u C = Me mod n (encryption of plaintext M in Zn)

u M = Cd mod n (decryption of ciphertext C in Zn)

Indeed, their order of execution does not matter: (Me) d = (Md) e mod n

[3] RSA operations involve exponents that “cancel out”, thus they are complementary

u x(p-1)(q-1) mod n = 1 (Euler’s Theorem)

Indeed, they invert each other: (Me) d = (Md) e = Med = Mk(p-1)(q-1)+1 mod n

 = (M (p-1)(q-1))k × M = 1k × M = M mod n
58

Signing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

u core property: Med = M mod p × q for any message M in Zn

RSA cryptosystem lends itself to a signature scheme

u ‘reverse’ use of keys is possible : (Md)e = M mod p × q

u signing algorithm Sign(M,d,n): σ = Md mod n for message M in Zn

u verifying algorithm Vrfy(σ,M,e,n): return M == σe mod n

59

The RSA algorithm (for signing)
General case
Setup (run by a given user)

u n = p × q, with p and q primes
u e relatively prime to φ(n) = (p - 1)(q - 1)
u d inverse of e in Zφ(n)

Keys (same as in encryption)
u public key is KPK = (n, e)
u private key is KSK = d

Sign
u σ = Md mod n for message M in Zn

Verify
u Check if M = σe mod n

Example

60

Setup
u p = 7, q = 17, n = 7 × 17 = 119
u e = 5, φ(n) = 6 × 16 = 96
u d = 77
Keys
u public key is (119, 5)
u private key is 77
Signing
u σ = 6677 mod 119 = 19 for M = 66 in Z119

Verification
u Check if M = 195 mod 119 = 66

Digital signatures & hashing
Very often digital signatures are used with hash functions
u the hash of a message is signed, instead of the message itself

Signing message M

u let h be a cryptographic hash function, assume RSA setting (n, d, e)
u compute signature σ on message Μ as: σ = h(M)d mod n
u send σ, M

Verifying signature σ
u use public key (e, n) to compute (candidate) hash value Η = σe mod n
u if H = h(M) output ACCEPT, else output REJECΤ

61

Security of RSA

Based on difficulty of factoring large numbers (into large primes), i.e., n = p × q into p, q
u note that for RSA to be secure, both p and q must be large primes
u widely believed to hold true

u since 1978, subject of extensive cryptanalysis without any serious flaws found
u best known algorithm takes exponential time in security parameter (key length |n|)

u how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

u estimated computing/memory resources needed
to factor an RSA number within one year

62

Length (bits) PCs Memory

430 1 128MB

760 215,000 4GB
1,020 342´106 170GB

1,620 1.6´1015 120TB

RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n|)
u known in the form RSA-`key bit length’ expressed in bits or decimal digits

u provide empirical evidence/confidence on strength of specific RSA instantiations

Known attacks
u RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines

u 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. II, 4 500MHz Digital/Compaq

u RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)

u RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)

u RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges
u prizes for factoring RSA-1024, RSA-2048 is $100K, $200K – estimated at 800K, 20B Mips-centuries

63

Deriving an RSA key pair
u public key is pair of integers (e,n), secret key is (d, n) or d
u the value of n should be quite large, a product of two large primes, p and q
u often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)

u but 2048-bit keys are becoming a standard requirement nowadays

u the larger the value of n the harder to factor to infer p and q
u but also the slower to process messages

u a relatively large integer e is chosen
u e.g., by choosing e as a prime that is larger than both (p − 1) and (q − 1)
u why?

u d is chosen s.t. e × d = 1 mod (p − 1)(q − 1)
u how?

64

Discussion on RSA
u Assume p = 5, q = 11, n = 5 × 11 = 55, φ(n) = 40, e = 3, d = 27

u why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
u recall that the ciphertext is C = Μ3 mod 55 for M in Z55

65

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C 1 8 27 9 15 51 13 17 14 10 11 23 52 49 20 26 18 2
M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
C 39 25 21 33 12 19 5 31 48 7 24 50 36 43 22 34 30 16
M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
C 53 37 29 35 6 3 32 44 45 41 38 42 4 40 46 28 47 54

Discussion on RSA
u Assume p = 5, q = 11, n = 5 × 11 = 55, φ(n) = 40, e = 3, d = 27

u why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
u recall that the ciphertext is C = Μ3 mod 55 for M in Z55

u Assume n = 20434394384355534343545428943483434356091 = p × q
u can e be the number 4343253453434536?

u Are there problems with applying RSA in practice?
u what other algorithms are required to be available to the user?

u Are there problem with respect to RSA security?
u does it satisfy CPA (advanced) security?

66

Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

u Main issues
u representation of integers of arbitrarily large size; and

u arithmetic operations on them, namely computing modular powers

u Required algorithms (at setup)
u generation of random numbers of a given number of bits (to compute candidates p, q)

u primality testing (to check that candidates p, q are prime)

u computation of the GCD (to verify that e and φ(n) are relatively prime)

u computation of the multiplicative inverse (to compute d from e)

67

Modular powers

Repeated squaring algorithm

u speeds up computation of ap mod n

u write the exponent p in binary
u p = pb - 1 pb - 2 … p1 p0

u start with Q1 = apb - 1 mod n
u repeatedly compute

Qi = ((Qi - 1)2 mod n)apb - i mod n

u obtain Qb = ap mod n
In total O (log p) arithmetic operations

Example

u 318 mod 19 (18 = 10010)

u Q1 = 31 mod 19 = 3

u Q2 = (32 mod 19)30 mod 19 = 9

u Q3 = (92 mod 19)30 mod 19 = 81 mod 19 = 5

u Q4 = (52 mod 19)31 mod 19 =
 (25 mod 19)3 mod 19 = 18 mod 19 = 18

u Q5 = (182 mod 19)30 mod 19 = (324 mod 19)
mod 19 = 17×19 + 1 mod 19 = 1

68

Pseudo-primality testing
Testing whether a number is prime (primality testing) is a difficult problem

An integer n ³ 2 is said to be a base-x pseudo-prime if
u xn - 1 mod n = 1 (Fermat’s little theorem)

u Composite base-x pseudo-primes are rare

u a random 100-bit integer is a composite base-2 pseudo-prime
with probability less than 10-13

u the smallest composite base-2 pseudo-prime is 341
u Base-x pseudo-primality testing for an integer n

u check whether xn - 1 mod n = 1
u can be performed efficiently with the repeated squaring algorithm

69

Security properties

u Plain RSA is deterministic
u why is this a problem?

u Plain RSA is also homomorphic
u what does this mean?
u multiply ciphertexts to get ciphertext of multiplication!
u [(m1)e mod N][(m2)e mod N] = (m1m2)e mod N
u however, not additively homomorphic

70

Real-world usage of RSA

u Randomized RSA
u to encrypt message M under an RSA public key (e,n), generate a new

random session AES key K, compute the ciphertext as [Ke mod n, AESK(M)]
u prevents an adversary distinguishing two encryptions of the same M since

K is chosen at random every time encryption takes place

u Optimal Asymmetric Encryption Padding (OAEP)
u roughly, to encrypt M, choose random r, encode M as

M’ = [X = M Å H1(r) , Y= r Å H2(X)] where H1 and H2 are cryptographic
hash functions, then encrypt it as (M’) e mod n

71

